Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur J Neurosci ; 58(4): 2961-2984, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37518943

RESUMEN

Post-stroke depression, a common complication after stroke, severely affects the recovery and quality of life of patients with stroke. Owing to its complex mechanisms, post-stroke depression treatment remains highly challenging. Hippocampal synaptic plasticity is one of the key factors leading to post-stroke depression; however, the precise molecular mechanisms remain unclear. Numerous studies have found that neurotrophic factors, protein kinases and neurotransmitters influence depressive behaviour by modulating hippocampal synaptic plasticity. This review further elaborates on the role of hippocampal synaptic plasticity in post-stroke depression by summarizing recent research and analysing possible molecular mechanisms. Evidence for the correlation between hippocampal mechanisms and post-stroke depression helps to better understand the pathological process of post-stroke depression and improve its treatment.


Asunto(s)
Depresión , Calidad de Vida , Humanos , Depresión/etiología , Plasticidad Neuronal/fisiología , Hipocampo/metabolismo , Factores de Crecimiento Nervioso/metabolismo
2.
J Nat Prod ; 86(5): 1230-1239, 2023 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-37146221

RESUMEN

Amethystoidesic acid (1), a triterpenoid with an unprecedented 5/6/6/6 tetracyclic skeleton, and six undescribed diterpenoids, amethystoidins A-F (2-7), were isolated from the rhizomes of Isodon amethystoides along with 31 known di- and triterpenoids (8-38). Their structures were fully elucidated via extensive spectroscopic analysis including 1D and 2D NMR, high-resolution electrospray ionization mass spectrometry (HRESIMS), and electronic circular dichroism (ECD) calculations. Compound 1 is the first example of a triterpenoid possessing a rare ring system (5/6/6/6) derived from a contracted A-ring and the 18,19-seco-E-ring of ursolic acid. Compounds 6, 16, 21, 22, 24, and 27 significantly inhibited nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated RAW264.7 cells, which could be partly mediated by the downregulation of LPS-induced inducible nitric oxide synthase (iNOS) protein expression.


Asunto(s)
Isodon , Triterpenos , Isodon/química , Rizoma/metabolismo , Triterpenos/farmacología , Lipopolisacáridos/farmacología , Antiinflamatorios/farmacología , Antiinflamatorios/química , Óxido Nítrico , Estructura Molecular
3.
World J Radiol ; 15(12): 350-358, 2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38179203

RESUMEN

BACKGROUND: Gastrointestinal stromal tumor (GIST) is a rare gastrointestinal mesenchymal tumor with potential malignancy. Once the tumor ruptures, regardless of tumor size and mitotic number, it can be identified into a high-risk group. It is of great significance for the diagnosis, treatment, and prognosis of GIST if non-invasive examination can be performed before surgery to accurately assess the risk of tumor. AIM: To identify the factors associated with GIST rupture and pathological risk. METHODS: A cohort of 50 patients with GISTs, as confirmed by postoperative pathology, was selected from our hospital. Clinicopathological and computed tomography data of the patients were collected. Logistic regression analysis was used to evaluate factors associated with GIST rupture and pathological risk grade. RESULTS: Pathological risk grade, tumor diameter, tumor morphology, internal necrosis, gas-liquid interface, and Ki-67 index exhibited significant associations with GIST rupture (P < 0.05). Gender, tumor diameter, tumor rupture, and Ki-67 index were found to be correlated with pathological risk grade of GIST (P < 0.05). Multifactorial logistic regression analysis revealed that male gender and tumor diameter ≥ 10 cm were independent predictors of a high pathological risk grade of GIST [odds ratio (OR) = 11.12, 95% confidence interval (95%CI): 1.81-68.52, P = 0.01; OR = 22.96, 95%CI: 2.19-240.93, P = 0.01]. Tumor diameter ≥ 10 cm, irregular shape, internal necrosis, gas-liquid interface, and Ki-67 index ≥ 10 were identified as independent predictors of a high risk of GIST rupture (OR = 9.67, 95%CI: 2.15-43.56, P = 0.01; OR = 35.44, 95%CI: 4.01-313.38, P < 0.01; OR = 18.75, 95%CI: 3.40-103.34, P < 0.01; OR = 27.00, 95%CI: 3.10-235.02, P < 0.01; OR = 4.43, 95%CI: 1.10-17.92, P = 0.04). CONCLUSION: Tumor diameter, tumor morphology, internal necrosis, gas-liquid, and Ki-67 index are associated with GIST rupture, while gender and tumor diameter are linked to the pathological risk of GIST. These findings contribute to our understanding of GIST and may inform non-invasive examination strategies and risk assessment for this condition.

4.
Comput Biol Med ; 151(Pt A): 106288, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36401970

RESUMEN

SARS-CoV-2 Mpro (Mpro) is the critical cysteine protease in coronavirus viral replication. Tea polyphenols are effective Mpro inhibitors. Therefore, we aim to isolate and synthesize more novel tea polyphenols from Zhenghedabai (ZHDB) white tea methanol-water (MW) extracts that might inhibit COVID-19. Through molecular networking, 33 compounds were identified and divided into 5 clusters. Further, natural products molecular network (MN) analysis showed that MN1 has new phenylpropanoid-substituted ester-catechin (PSEC), and MN5 has the important basic compound type hydroxycinnamoylcatechins (HCCs). Thus, a new PSEC (1, PSEC636) was isolated, which can be further detected in 14 green tea samples. A series of HCCs were synthesized (2-6), including three new acetylated HCCs (3-5). Then we used surface plasmon resonance (SPR) to analyze the equilibrium dissociation constants (KD) for the interaction of 12 catechins and Mpro. The KD values of PSEC636 (1), EGC-C (2), and EC-CDA (3) were 2.25, 2.81, and 2.44 µM, respectively. Moreover, compounds 1, 2, and 3 showed the potential Mpro inhibition with IC50 5.95 ± 0.17, 9.09 ± 0.22, and 23.10 ± 0.69 µM, respectively. Further, we used induced fit docking (IFD), binding pose metadynamics (BPMD), and molecular dynamics (MD) to explore the stable binding pose of Mpro-1, showing that 1 could tightly bond with the amino acid residues THR26, HIS41, CYS44, TYR54, GLU166, and ASP187. The computer modeling studies reveal that the ester, acetyl, and pyrogallol groups could improve inhibitory activity. Our research suggests that these catechins are effective Mpro inhibitors, and might be developed as therapeutics against COVID-19.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Catequina , Humanos , SARS-CoV-2 , Catequina/farmacología , , Polifenoles , Ésteres
5.
Bioorg Med Chem ; 67: 116838, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35617790

RESUMEN

Honokiol, isolated from a traditional Chinese medicine (TCM) Magnolia officinalis, is a biphenolic compound with several biological activities. To improve and broaden its biological activity, herein, two series of honokiol thioethers bearing 1,3,4-oxadiazole moieties were prepared and assessed for their α-glucosidase and SARS-CoV-2 entry inhibitory activities. Among all the honokiol thioethers, compound 7l exhibited the strongest α-glucosidase inhibitory effect with an IC50 value of 18.9 ± 2.3 µM, which was superior to the reference drug acarbose (IC50 = 24.4 ± 0.3 µM). Some interesting results of structure-activity relationships (SARs) have also been discussed. Enzyme kinetic study demonstrated that 7l was a noncompetitive α-glucosidase inhibitor, which was further supported by the results of molecular docking. Moreover, honokiol thioethers 7e, 9a, 9e, and 9r exhibited potent antiviral activity against SARS-CoV-2 pseudovirus entering into HEK-293 T-ACE2h. Especially 9a displayed the strongest inhibitory activity against SARS-CoV-2 pseudovirus entry with an IC50 value of 16.96 ± 2.45 µM, which was lower than the positive control Evans blue (21.98 ± 1.98 µM). Biolayer interferometry (BLI) binding and docking studies suggested that 9a and 9r may effectively block the binding of SARS-CoV-2 to the host ACE2 receptor through dual recognition of SARS-CoV-2 spike RBD and human ACE2. Additionally, the potent honokiol thioethers 7l, 9a, and 9r displayed relatively no cytotoxicity to normal cells (LO2). These findings will provide a theoretical basis for the discovery of honokiol derivatives as potential both α-glucosidase and SARS-CoV-2 entry inhibitors.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2 , Compuestos de Bifenilo , Células HEK293 , Humanos , Lignanos , Simulación del Acoplamiento Molecular , Oxadiazoles , Unión Proteica , Glicoproteína de la Espiga del Coronavirus/química , Sulfuros , alfa-Glucosidasas/metabolismo
6.
Pharmaceuticals (Basel) ; 14(9)2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34577585

RESUMEN

The 2019 coronavirus disease (COVID-19) caused by SARS-CoV-2 virus infection has posed a serious danger to global health and the economy. However, SARS-CoV-2 medications that are specific and effective are still being developed. Honokiol is a bioactive component from Magnoliae officinalis Cortex with damp-drying effect. To develop new potent antiviral molecules, a series of novel honokiol analogues were synthesized by introducing various 3-((5-phenyl-1,3,4-oxadiazol-2-yl)methyl)oxazol-2(3H)-ones to its molecule. In a SARS-CoV-2 pseudovirus model, all honokiol derivatives were examined for their antiviral entry activities. As a result, 6a and 6p demonstrated antiviral entry effect with IC50 values of 29.23 and 9.82 µM, respectively. However, the parental honokiol had a very weak antiviral activity with an IC50 value more than 50 µM. A biolayer interfero-metry (BLI) binding assay and molecular docking study revealed that 6p binds to human ACE2 protein with higher binding affinity and lower binding energy than the parental honokiol. A competitive ELISA assay confirmed the inhibitory effect of 6p on SARS-CoV-2 spike RBD's binding with ACE2. Importantly, 6a and 6p (TC50 > 100 µM) also had higher biological safety for host cells than honokiol (TC50 of 48.23 µM). This research may contribute to the discovery of potential viral entrance inhibitors for the SARS-CoV-2 virus, although 6p's antiviral efficacy needs to be validated on SARS-CoV-2 viral strains in a biosafety level 3 facility.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...